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s 3 Starting point

= TcVM as described in slides for Virtual machines

= Formula calls: 11 different instructions
» Restructured, pulled call outside instruction-switch

= Tests
= Regression tests

= Model for performance tests
= |ife insurance calculations
» premium, reserve values, indexation
» nested recursive calls
= ~200 different formulas called, 750 Mio. calls
= very slow, GC very busy
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HHC: 2 aseline

= Cache
= | RU-Cache

= Key (CacheKey object)
= intid (instr nr), args V[], times-counter long[]
= comparison: hashCode, equals

= Value (V): object, might be big
= Reset on changed input
* Formula: simple yes/no
= Config 1: all non-simple
= Config 2: compiler decides
= Main action (if formula not simple)
= call formula: build cache key, lookup cache
= found => done

= not found
=> push on stack, call stack; push cache key, set PC
=> return instruction: pop cache key, write into cache




Mﬂszzzs @ Adaptive methods

= Activate based on formula counter

= Activate based on formula runtime

= Deactivate based on cache statistics
= Run profiling, then decide



M[Iﬂzzfes @ Adaptive - Counter

= Counter for each formula

= Start: no memoization

= Exclusion: simple formulas

= Threshold 10, 100 to activate

= Implementation
= add to callstack: caching yes/no
= otherwise problems with active calls



HHC:- 2 Adaptive - Runtime

= Runtime inklusive child calls for each formula
= Start: no memoization
= Exclusion: simple formulas
= Threshold: >0 ms, >10 ms for formula in total
= Implementation

» cheap: System.currentTimeMillis()

= add start-timestamp to callstack
= remember top caller for each formula



HHC:- 2 Adaptive — Cache statistics

= Cache hit, Cache miss per formula

= Start: all with memoization

= Exclusion: none

= Threshold: rate 10 %, 30 %, 50 %
= check in interval of 100 calls

* Implementation

= cache not reset

= active calls of formula still cached
= otherwise callstack/keystack update needed



HHE:- 2 Adaptive — Profiling

= Counter + runtime + cache statistics
= Calls 1-10: no memoization
= Calls 11-50: with memoization
= Exclusion: none
= Threshold:
= cache hit-rate > 30%, and
* runtime > 10 ms
= One check after 50 calls
= Implementation
= check counters on formula call



TcVM — status
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TU 1 [ 3 Results

Starting point: one night

Baseline

= config1: 3,531 sec, config2: 3,281 sec
Adaptive

= Counter 10: 3,172 sec, Counter 100: 3,359 sec
Runtime

* >0 ms: 3,329; >10 ms: 3,390

Cache hit rate

" <10%: 3,172; <30%: 2,906; <50%: 3,031
Cache and Runtime

= 3,343 sec
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Runtime [factor]
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mnﬂiﬁes @ Lessons learned

= Proper infrastructure (profiling class etc.) needed
= Most of work

= comparisions

= working out heuristics

* handling of recursive calls
= Performance

= Naive caching (with LRU) already very useful

* [mprovements with simple methods reached

= Overhead not that bad

* One bottleneck: tree access (by macroprogram)
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