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Starting point

� TcVM as described in slides for Virtual machines

� Formula calls: 11 different instructions

� Restructured, pulled call outside instruction-switch

� Tests

� Regression tests

� Model for performance tests

� Life insurance calculations

� premium, reserve values, indexation

� nested recursive calls

� ~200 different formulas called, 750 Mio. calls

� very slow, GC very busy
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Baseline

� Cache
� LRU-Cache

� Key (CacheKey object)
� int id (instr nr), args V[], times-counter long[] 
� comparison: hashCode, equals

� Value (V): object, might be big
� Reset on changed input

� Formula: simple yes/no
� Config 1: all non-simple
� Config 2: compiler decides

� Main action (if formula not simple)
� call formula: build cache key, lookup cache

� found => done
� not found

=> push on stack, call stack; push cache key, set PC
=> return instruction: pop cache key, write into cache
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Adaptive methods

� Activate based on formula counter

� Activate based on formula runtime

� Deactivate based on cache statistics

� Run profiling, then decide
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Adaptive - Counter

� Counter for each formula

� Start: no memoization

� Exclusion: simple formulas

� Threshold 10, 100 to activate

� Implementation

� add to callstack: caching yes/no

� otherwise problems with active calls
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Adaptive - Runtime

� Runtime inklusive child calls for each formula

� Start: no memoization

� Exclusion: simple formulas

� Threshold: >0 ms, >10 ms for formula in total

� Implementation

� cheap: System.currentTimeMillis()

� add start-timestamp to callstack

� remember top caller for each formula
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Adaptive – Cache statistics

� Cache hit, Cache miss per formula

� Start: all with memoization

� Exclusion: none

� Threshold: rate 10 %, 30 %, 50 %

� check in interval of 100 calls

� Implementation

� cache not reset

� active calls of formula still cached

� otherwise callstack/keystack update needed
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Adaptive – Profiling

� Counter + runtime + cache statistics

� Calls 1-10: no memoization

� Calls 11-50: with memoization

� Exclusion: none

� Threshold: 

� cache hit-rate > 30%, and

� runtime > 10 ms

� One check after 50 calls

� Implementation

� check counters on formula call
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Results

� Starting point: one night

� Baseline

� config1: 3,531 sec, config2: 3,281 sec

� Adaptive

� Counter 10: 3,172 sec, Counter 100: 3,359 sec

� Runtime

� >0 ms: 3,329; >10 ms: 3,390

� Cache hit rate

� <10%: 3,172; <30%: 2,906; <50%: 3,031

� Cache and Runtime

� 3,343 sec
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Results

Runtime comparison
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Lessons learned

� Proper infrastructure (profiling class etc.) needed

� Most of work

� comparisions

� working out heuristics

� handling of recursive calls

� Performance

� Naive caching (with LRU) already very useful

� Improvements with simple methods reached

� Overhead not that bad

� One bottleneck: tree access (by macroprogram)


