Adaptive Memoization
In the
TreeCalc VM

Dynamic Compilation 185.A50 VU
SS 2012 24.7.2012
Stefan Neubauer

FAKULTAT
FUR INFORMATIK comp\ijlg
Faculty of Informatics Iang Uages

Dynamic Compilation, Adaptive Memoization in TcVM, 24.7.2012

compllC a7~
EhlJuages S5

Schedule

= Starting point

= Baseline

= Dynamic methods
= Results

= | essons learned

s 3 Starting point

= TcVM as described in slides for Virtual machines

= Formula calls: 11 different instructions
» Restructured, pulled call outside instruction-switch

= Tests
= Regression tests

= Model for performance tests
= |ife insurance calculations
» premium, reserve values, indexation
» nested recursive calls
= ~200 different formulas called, 750 Mio. calls
= very slow, GC very busy

comp{E - ; B I'
HHC: 2 aseline

= Cache
= | RU-Cache

= Key (CacheKey object)
= intid (instr nr), args V[], times-counter long[]
= comparison: hashCode, equals

= Value (V): object, might be big
= Reset on changed input
* Formula: simple yes/no
= Config 1: all non-simple
= Config 2: compiler decides
= Main action (if formula not simple)
= call formula: build cache key, lookup cache
= found => done

= not found
=> push on stack, call stack; push cache key, set PC
=> return instruction: pop cache key, write into cache

Mﬂszzzs @ Adaptive methods

= Activate based on formula counter

= Activate based on formula runtime

= Deactivate based on cache statistics
= Run profiling, then decide

M[Iﬂzzfes @ Adaptive - Counter

= Counter for each formula

= Start: no memoization

= Exclusion: simple formulas

= Threshold 10, 100 to activate

= Implementation
= add to callstack: caching yes/no
= otherwise problems with active calls

HHC:- 2 Adaptive - Runtime

= Runtime inklusive child calls for each formula
= Start: no memoization
= Exclusion: simple formulas
= Threshold: >0 ms, >10 ms for formula in total
= Implementation

» cheap: System.currentTimeMillis()

= add start-timestamp to callstack
= remember top caller for each formula

HHC:- 2 Adaptive — Cache statistics

= Cache hit, Cache miss per formula

= Start: all with memoization

= Exclusion: none

= Threshold: rate 10 %, 30 %, 50 %
= check in interval of 100 calls

* Implementation

= cache not reset

= active calls of formula still cached
= otherwise callstack/keystack update needed

HHE:- 2 Adaptive — Profiling

= Counter + runtime + cache statistics
= Calls 1-10: no memoization
= Calls 11-50: with memoization
= Exclusion: none
= Threshold:
= cache hit-rate > 30%, and
* runtime > 10 ms
= One check after 50 calls
= Implementation
= check counters on formula call

TcVM — status

(Julauter £
lang uages y

«—[SP|
0s
var2 <Start>
vari Mz
arg2 BP
argll«— | BP PC
Stack Call stack
___ Machine status|
. Bytecode [[[[[[[-]] !
Tables 5
Nodes i
Edges
Inputs |
. Formulas ;
' tex:

o lguter 4 ‘
TU 1 [3 Results

Starting point: one night

Baseline

= config1: 3,531 sec, config2: 3,281 sec
Adaptive

= Counter 10: 3,172 sec, Counter 100: 3,359 sec
Runtime

* >0 ms: 3,329; >10 ms: 3,390

Cache hit rate

" <10%: 3,172; <30%: 2,906; <50%: 3,031
Cache and Runtime

= 3,343 sec

11

Runtime [factor]

Ehlfuages 4

comp\i:y %
o’ il

Runtime comparison

Results

120%

100%

108%
102%

101% 103%

97%

89%

92%

102%

o
S
R

60%

40% -

20%

0% -

| i% | |
B1 B2

C10 C100

RO R10
Method

Hit10

Hit30

Hit50

CR

12

mnﬂiﬁes @ Lessons learned

= Proper infrastructure (profiling class etc.) needed
= Most of work

= comparisions

= working out heuristics

* handling of recursive calls
= Performance

= Naive caching (with LRU) already very useful

* [mprovements with simple methods reached

= Overhead not that bad

* One bottleneck: tree access (by macroprogram)

13

