
Dynamic Compilation, Adaptive Memoization in TcVM, 24.7.2012

Adaptive Memoization

in the

TreeCalc VM

Dynamic Compilation 185.A50 VU

SS 2012 24.7.2012

Stefan Neubauer



2

Schedule

� Starting point

� Baseline

� Dynamic methods

� Results

� Lessons learned



3

Starting point

� TcVM as described in slides for Virtual machines

� Formula calls: 11 different instructions

� Restructured, pulled call outside instruction-switch

� Tests

� Regression tests

� Model for performance tests

� Life insurance calculations

� premium, reserve values, indexation

� nested recursive calls

� ~200 different formulas called, 750 Mio. calls

� very slow, GC very busy



4

Baseline

� Cache
� LRU-Cache

� Key (CacheKey object)
� int id (instr nr), args V[], times-counter long[] 
� comparison: hashCode, equals

� Value (V): object, might be big
� Reset on changed input

� Formula: simple yes/no
� Config 1: all non-simple
� Config 2: compiler decides

� Main action (if formula not simple)
� call formula: build cache key, lookup cache

� found => done
� not found

=> push on stack, call stack; push cache key, set PC
=> return instruction: pop cache key, write into cache



5

Adaptive methods

� Activate based on formula counter

� Activate based on formula runtime

� Deactivate based on cache statistics

� Run profiling, then decide



6

Adaptive - Counter

� Counter for each formula

� Start: no memoization

� Exclusion: simple formulas

� Threshold 10, 100 to activate

� Implementation

� add to callstack: caching yes/no

� otherwise problems with active calls



7

Adaptive - Runtime

� Runtime inklusive child calls for each formula

� Start: no memoization

� Exclusion: simple formulas

� Threshold: >0 ms, >10 ms for formula in total

� Implementation

� cheap: System.currentTimeMillis()

� add start-timestamp to callstack

� remember top caller for each formula



8

Adaptive – Cache statistics

� Cache hit, Cache miss per formula

� Start: all with memoization

� Exclusion: none

� Threshold: rate 10 %, 30 %, 50 %

� check in interval of 100 calls

� Implementation

� cache not reset

� active calls of formula still cached

� otherwise callstack/keystack update needed



9

Adaptive – Profiling

� Counter + runtime + cache statistics

� Calls 1-10: no memoization

� Calls 11-50: with memoization

� Exclusion: none

� Threshold: 

� cache hit-rate > 30%, and

� runtime > 10 ms

� One check after 50 calls

� Implementation

� check counters on formula call



10

TcVM – status

os

...

var2

var1

...

arg2

arg1

PC Stack Call stack

Start

Mz

F-Id

BP

PCBP

SP

CSP

...Bytecode

Tables

Nodes

Edges

Inputs

Formulas

Input values

Mult. counters

tcx Session data

Cache

Machine status

...

keyn

...

key2

key1

Keystack

KSP

Profiledata



11

Results

� Starting point: one night

� Baseline

� config1: 3,531 sec, config2: 3,281 sec

� Adaptive

� Counter 10: 3,172 sec, Counter 100: 3,359 sec

� Runtime

� >0 ms: 3,329; >10 ms: 3,390

� Cache hit rate

� <10%: 3,172; <30%: 2,906; <50%: 3,031

� Cache and Runtime

� 3,343 sec



12

Results

Runtime comparison

108%

100%
97%

102% 101% 103%
97%

89%
92%

102%

0%

20%

40%

60%

80%

100%

120%

B1 B2 C10 C100 R0 R10 Hit10 Hit30 Hit50 CR

Method

R
u

n
ti

m
e
 [

fa
c
to

r]



13

Lessons learned

� Proper infrastructure (profiling class etc.) needed

� Most of work

� comparisions

� working out heuristics

� handling of recursive calls

� Performance

� Naive caching (with LRU) already very useful

� Improvements with simple methods reached

� Overhead not that bad

� One bottleneck: tree access (by macroprogram)


